
OCR Statistics 2 Module Revision Sheet

The S2 exam is 1 hour 30 minutes long. You are allowed a graphics calculator.

Before you go into the exam make sure you are fully aware of the contents of the formula booklet
you receive. Also be sure not to panic; it is not uncommon to get stuck on a question (I’ve
been there!). Just continue with what you can do and return at the end to the question(s)
you have found hard. If you have time check all your work, especially the first question you
attempted. . . always an area prone to error.

J .M .S .

Continuous Random Variables

• A continuous random variable (crv) is usually described by means of a probability density
function (pdf) which is defined for all real x. It must satisfy

∫

∞

−∞

f(x) dx = 1 and f(x) > 0 for all x.

• Probabilities are represented by areas under the pdf. For example the probability that X
lies between a and b is

P(a < X < b) =

∫ b

a

f(x) dx.

It is worth noting that for any specific value of X, P(X = value) = 0 because the area of
a single value is zero.

• The median is the value m such that
∫ m

−∞

f(x) dx =
1

2
.

That is; the area under the curve is cut in half at the value of the median. Similarly the
lower quartile (Q1) and upper quartile (Q3) are defined

∫ Q1

−∞

f(x) dx =
1

4
and

∫ Q3

−∞

f(x) dx =
3

4
.

• The expectation of X is defined

E(X) =

∫

∞

−∞

xf(x) dx.

Compare this to the discrete definition of
∑

xP(X = x). Always be on the lookout for

symmetry in the distribution before carrying out a long integral; it could save you a lot
of time. You should therefore always sketch the distribution if you can.

• The variance of X is defined

Var(X) =

∫

∞

−∞

x2f(x) dx− µ2.

Again, compare this to the discrete definition of
∑

x2P(X = x) − µ2. Don’t forget to

subtract µ2 at the end; someone always does!

• The main use for this chapter is to give you the basics you may need for the normal
distribution. The normal distribution is by far the most common crv.
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The Normal Distribution

• The normal distribution (also known as the Gaussian distribution1) is the most common
crv. It is found often in nature; for example daffodil heights, human IQs and pig weights
can all be modelled by the normal curve. A normal distribution can be summed up by
two parameters; its mean (µ) and its variance (σ2). For a random variable X we say
X ∼ N(µ, σ2).

• As with all crvs probabilities are given by areas; i.e. P(a < X < b) =
∫ b

a
f(x) dx. However

the f(x) for a normal distribution is complicated and impossible to integrate exactly. We
therefore need to use tables to help us. Since there are an infinite number of N(µ, σ2)
distributions we use a special one called the standard normal distribution. This is Z ∼
N(0, 12).

• The tables given to you work out the areas to the left of a value. The notation used
is Φ(z) =

∫ z

−∞
f(z) dz. So Φ(0.2) is the area to the left of 0.2 in the standard normal

distribution. The tables do not give Φ(negative value) so there are some tricks of the
trade you must be comfortable with. These and they are always helped by a sketch and
remembering that the area under the whole curve is one. For example

Φ(z) = 1− Φ(−z)

P(Z > z) = 1− Φ(z)

• Real normal distributions are related to the standard distribution by

Z =
X − µ

σ
(†).

So if X ∼ N(30, 16) and we want to answer P(X > 24) we convert X = 24 to Z =
(24 − 30)/4 = −1.5 and answer P(Z > −1.5) = P(Z < 1.5) = 0.9332.

• Another example; If Y ∼ N(100, 52) and we wish to calculate P(90 < Y < 105). Convert-
ing to P(−2 < Z < 1) using †. Then finish off with

P(−2 < Z < 1) = Φ(1)− Φ(−2) = Φ(1) − (1− Φ(2)) = 0.8413 − (1− 0.9772) = 0.8185.

• You must also be able to do a ‘reverse’ lookup from the table. Here you don’t look up an
area from a z value, but look up a z value from an area.

For example find a such that P(Z < a) = 0.65. Draw a sketch as to what this means;
to the left of some value a the area is 0.65. Therefore, reverse looking up we discover
a = 0.385.

• Harder example; Find b such that P(Z > b) = 0.9. Again a sketch shows us that the area
to the right of b must be 0.9, so b must be negative. Considering the sketch carefully, we
discover P(Z < −b) = 0.9, so reverse look up tells us −b = 1.282, so b = −1.282.

• Reverse look up is then combined with † in questions like this. For X ∼ N(µ, 52) it is
known P(X < 20) = 0.8; find µ. Here you will find it easier if you draw both a sketch for
the X and also for Z and marking on the important points. The z value by reverse look
up is found to be 0.842. Therefore by † we obtain, 0.842 = (20− µ)/5, so µ = 15.79.

1I do wish we would call it the Gaussian distribution. Carl Friedrich Gauss. Arguably the greatest mathe-

matician ever. German. . .
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• Harder example; Y ∼ (µ, σ2) you know P(Y < 20) = 0.25 and P(Y > 30) = 0.4. You
should obtain two † equations;

−0.674 =
20− µ

σ
and 0.253 =

30− µ

σ
⇒ µ = 27.27 and σ = 10.79.

• The binomial distribution can sometimes be approximated by the normal distribution. If
X ∼ B(n, p) and np > 5 and nq > 5 then we can use V ∼ N(np, npq) as an approximation.
Because we are going from a discrete distribution to a continuous, a continuity correction
must be used.

• For example if X ∼ B(90, 1
3
) we can see np = 30 > 5 and nq = 60 > 5 so we can use

V ∼ N(30, 20). Some examples of the conversions:

P(X = 29) ≈ P(28.5 < V < 29.5),

P(X > 25) ≈ P(V > 25.5),

P(5 6 X < 40) ≈ P(41

2
< V < 391

2
).

The Poisson Distribution

• The Poisson distribution is a discrete random variable (like the binomial or geometric
distribution). It is defined

P(X = x) = e−λλ
x

x!
.

X can take the values 0, 1, 2, . . . and the probabilities depend on only one parameter, λ.
Therefore we find

x 0 1 2 3 . . .

P(X = x) e−λ λ0

0!
e−λ λ1

1!
e−λ λ2

2!
e−λ λ3

3!
. . .

• For a Poisson distribution E(X) = Var(X) = λ. We write X ∼ Po(λ).

• As for the binomial we use tables to help us and they are given (for various different
λs) in the form P(X 6 x). So if λ = 5 and we wish to discover P(X < 8) we do
P(X < 8) = P(X 6 7) = 0.8666. Also note that if we want P(X > 4) we would use the
fact that probabilities sum to one, so P(X > 4) = 1− P(X 6 3) = 1− 0.2650 = 0.7350.

• The Poisson distribution can be used as an approximation to the binomial distribution
provided n > 50 and np < 5. If these conditions are met and X ∼ B(n, p) we use
W ∼ Po(np). [No continuity correction required since we are approximating a discrete by
a discrete.]

• For example with X ∼ B(60, 1

30
) both conditions are met and we use W ∼ Po(2). There-

fore some example of some calculations:

P(X 6 3) ≈ P(W 6 3) = 0.8571 (from tables)

P(3 < X 6 7) ≈ P(3 < W 6 7) = P(W 6 7)− P(W 6 3) = 0.9989 − 0.8571 = 0.1418.

• The normal distribution can be used as an approximation to the to the Poisson distribution
if λ > 15. So if X ∼ Po(λ) we use Y ∼ N(λ, λ). However, here we are approximating a
discrete by a continuous, so a continuity correction must be applied.
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• For example if X ∼ Po(50) we can use Y ∼ N(50, 50) since λ > 15. To calculate
P(X = 49) we would calculate (using Z = (X − µ)/σ)

P(X = 49) ≈ P(48.5 < Y < 49.5) = P(−0.212 < Z < −0.071)

= P(0.071 < Z < 0.212)

= Φ(0.212) − Φ(0.071)

= 0.5840 − 0.5283 = 0.0557.

Similarly

P(X < 55) ≈ P(Y < 54.5)

= P

(

Z <
54.5 − 50√

50

)

= P(Z < 0.6364)

= 0.738.

Sampling

• If a sample is taken from an underlying population you can view the mean of this sample
as a random variable in its own right. This is a subtle point and you should dwell on it!
If you can’t get to sleep sometime, you should lie awake thinking about it. (I had to.)

• If the underlying population has E(X) = µ and Var(X) = σ2, then the distribution of the
mean of the sample, X̄, is

E(X̄) = µ (the same as the underlying) and Var(X̄) =
σ2

n
.

This means that the larger your sample, the less likely it is that the mean of this sample
is a long way from the population mean. So if you are taking a sample, make it as big as
you can!

• If your sample is sufficiently large (roughly > 30) the central limit theorem (CLT) states
that the distribution of the sample mean is approximated by

X̄ ∼ N

(

µ,
σ2

n

)

no matter what the underlying distribution is.

• If the underlying population is discrete you need to include a 1

2n
correction factor when

using the CLT. For example P(X̄ > 3.4) for a discrete underlying with a sample size of
45 would mean you calculate P(X̄ > 3.4 + 1

90
).

• If the underlying population is a normal distribution then no matter how large the sample
is (e.g. just 4) we can say

X̄ ∼ N

(

µ,
σ2

n

)

.

• If you have the whole population data available to you then to calculate the mean you
use µ =

∑
x

n
and to calculate the variance you use

σ2 =

∑

x2

n
− x̄2 =

∑

x2 − nx̄2

n
.
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However you do not usually have all the data. It is more likely that you merely have a
sample from the population. From this sample you may want to estimate the population
mean and variance. As you would expect your best estimate of the population mean is
the mean of the sample

∑
x

n
. However the best estimate of the population variance is not

the variance of the sample. You must calculate s2 where

s2 =

∑

x2 − nx̄2

n− 1
=

n

n− 1

(∑

x2 − nx̄2

n

)

=
n

n− 1

(∑

x2

n
− x̄2

)

.

Some textbooks use σ̂ to mean s; they both mean ‘the unbiased estimator of the population
σ’. So

(Estimate of population variance) =
n

n− 1
× (Sample variance).

• You could be given raw data ({x1, x2, . . . xn}) in which you just do a direct calculation.
Or summary data (

∑

x2,
∑

x and n). Or you could be given the sample variance and n.
From all of these you should be able to calculate s2. It should be clear from the above
section how to do this.

Continuous Hypothesis Testing

• In any hypothesis test you will be testing a ‘null’ hypothesis H0 against an ‘alternative’
hypothesis H1. In S2, your H0 will only ever be one of these three:

H0 : p =something

H0 : λ =something

H0 : µ =something

Don’t deviate from this and you can’t go wrong. Notice that it does not say H0 =
p =something.

• The book gives three approaches to continuous hypothesis testing, but they are all essen-
tially the same. You always compare the probability of what you have seen (under H0)
and anything more extreme, and compare this probability to the significance level. If it is
less than the significance level, then you reject H0 and if it is greater, then you accept H0.

• Remember we connect the real (X) world to the standard (Z) world using Z = X−µ
σ

.

• You can do this by:

1. Calculating the probability of the observed value and anything more extreme and
comparing to the significance level.

2. Finding the critical Z-values for the test and finding the Z-value for the observed
event and comparing. (e.g. critical Z-values of 1.96 and −1.96; if observed Z is 1.90
we accept H0; if observed is −2.11 the reject H0.)

3. Finding the critical values for X̄ . For example critical values might be 17 and 20. If
X lies between them then accept H0; else reject H0.

• Example: P111 Que 8. Using method 3 from above.

Let X be the amount of magnesium in a bottle. We are told X ∼ N(µ, 0.182). We are

taking a sample of size 10, so X̄ ∼ N(µ, 0.18
2

10
). Clearly

H0 : µ = 6.8

H1 : µ 6= 6.8.
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We proceed assuming H0 is correct. Under H0, X̄ ∼ N(6.8, 0.18
2

10
). This is a 5% two-tailed

test, so we need 21

2
% at each end of our normal distribution. The critical Z values are

(by reverse lookup) Zcrit = ±1.960. To find how these relate to X̄crit we convert thus

Zcrit =
X̄crit − µ
√

σ2

n

1.960 =
X̄crit − 6.8
√

0.182

10

and − 1.960 =
X̄crit − 6.8
√

0.182

10

These solve to X̄crit = 6.912 and X̄crit = 6.688. The observed X̄ is 6.92 which lies just
outside the acceptance region. We therefore reject H0 and conclude that the amount of
magnesium per bottle is probably different to 6.8. [The book is in error in claiming that
we conclude it is bigger than 6.8.]

Discrete Hypothesis Testing

• For any test with discrete variables, it is usually best to find the critical value(s) for the
test you have set and hence the critical region. The critical value is the first value at which
you would reject the null hypothesis.

• For example if testing X ∼ B(16, p) we may test (at the 5% level)

H0 : p = 5

6

H1 : p < 5

6
.

We are looking for the value at the lower end of the distribution (remember the “<” acts
as an arrow telling us where to look in the distribution). We find P(X 6 11) = 0.1134
and P(X 6 10) = 0.0378. Therefore the critical value is 10. Thus the critical region
is {0, 1, 2 . . . 9, 10}. So when the result for the experiment is announced, if it lies in the
critical region, we reject H0, else accept H0.

• Another example: If testing X ∼ B(20, p) at the 10% level with

H0 : p = 1

6

H1 : p 6= 1

6
.

Here we have a two tailed test with 5% at either end of the distribution. At the lower end
we find P(X = 0) = 0.0261 and P(X 6 1) = 0.1304 so the critical value is 0 at the lower
end. At the upper end we find P(X 6 5) = 0.8982 and P(X 6 6) = 0.9629. Therefore

P(X > 6) = 1− P(X 6 5) = 1− 0.8982 = 0.1018

P(X > 7) = 1− P(X 6 6) = 1− 0.9629 = 0.0371

So at the upper end we find X = 7 to be the critical value. [Remember that at the upper
end, the critical value is always one more than the upper of the two values where the gap
occurs; here the gap was between 5 and 6 in the tables, so 7 is the critical value.] The
critical region is therefore {0, 7, 8 . . . 20}.

• There is a Poisson example in the ‘Errors in hypothesis testing’ section.
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Errors In Hypothesis Testing

• A Type I error is made when a true null hypothesis is rejected.

• A Type II error is made when a false null hypothesis is accepted.

• For continuous hypothesis tests, the P(Type I error) is just the significance level of the
test. [This fact should be obvious; if not think about it harder!]

• For a Type II error, you must consider something like the example on page 140/1 which
is superbly explained. From the original test, you will have discovered the acceptance
and the rejection region(s). When you are told the real mean of the distribution and
asked to calculate the P(Type II error), you must use the new, real mean and the old
standard deviation (with a new normal distribution; e.g. N(µnew, σ

2
old

/n)) and work out
the probability that the value lies within the old acceptance region. [Again, the book is
very good on this and my explanation is poor.]

• For discrete hypothesis tests, the P(Type I error) is not merely the stated significance
level of the test. The stated value (e.g. 5%) is merely the ‘notional’ value of the test. The
true significance level of the test (and, therefore, the P(Type I error)) is the probability
of all the values in the rejection region, given the truth of the null hypothesis.

For example in a binomial hypothesis test we might have discovered the rejection region
wasX 6 3 andX > 16. If the null hypothesis was “H0: p = 0.3”, then the true significance
level of the test would be P(X 6 3 or X > 16 | p = 0.3).

• To calculate P(Type II error) you would, given the true value for p (or λ for Poisson),
calculate the probability of the complementary event. So in the above example, if the true
value of p was shown to be 0.4, you would calculate P(3 < X < 16 | p = 0.4).

• Worked example for Poisson: A hypothesis is carried out to test the following:

H0 : λ = 7

H1 : λ 6= 7

α = 10%

Two tailed test.

Under H0, X ∼ Po(7). We discover the critical values are X = 2 and X = 13. The critical
region is therefore X 6 2 and X > 13.

Therefore P(Type I error) and the true value of the test is therefore

P(X 6 2 or X > 13 | λ = 7) = P(X 6 2) + P(X > 13)

= P(X 6 2) + 1− P(X 6 12)

= 0.0296 + 1− 0.9730

= 0.0566 = 5.66%.

Given that the true value of λ was shown to be 10, then P(Type II error) would be

P(2 < X < 13 | λ = 10) = P(X 6 12)− P(X 6 2)

= 0.7916 − 0.0028

= 0.7888 = 78.88%.
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